If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+1=24
We move all terms to the left:
3x^2+1-(24)=0
We add all the numbers together, and all the variables
3x^2-23=0
a = 3; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·3·(-23)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{69}}{2*3}=\frac{0-2\sqrt{69}}{6} =-\frac{2\sqrt{69}}{6} =-\frac{\sqrt{69}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{69}}{2*3}=\frac{0+2\sqrt{69}}{6} =\frac{2\sqrt{69}}{6} =\frac{\sqrt{69}}{3} $
| 1*8+2*8+8*8+10*8+14*8+10*x=(6-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(10-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(9-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(7-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(56-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(32-x)*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(35-x)*10+8*8+5*8+1*8+0*8+1*8 | | 5x+3×=2x-×+30 | | 1*8+2*8+8*8+10*8+14*8+10*x=(42-x)*10+8*8+5*8+1*8+0*8+1*8 | | 0.6(6a+9)=20.4 | | 0.120(p+24)=9 | | 4x+2x=-2x+10 | | 80x+18(1.5x)=2138 | | 4x+2x=-1/2x+10 | | 9^3x+1=3^1 | | 3n-1/2-2=2 | | 9^3x+1=3 | | m-7=8.3 | | 1*8+2*8+8*8+10*8+14*8+10*x=(2-x)*10+8*8+5*8+1*8+0*8+1*8 | | x+20+2x10=90 | | x+20+2x+10=90 | | 2x-3x-4x=10 | | 40x^2+94x-39=0 | | 10-8x+4=-6+2x | | 40x^2+94x-30=0 | | x+x+10+2x=150 | | 10-4(2x-1)=-2(3-x | | 2x(4x+3)=-11 | | 1/2-1/2x-1/x^2=0 | | c+5.98=9.7 | | 3x-23=5x | | 51x=54 |